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Introduction

In this lecture we discuss the problem of overdispersion in
logistic and Poisson regression, and how to include it in the
modeling process.
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Distributional Characteristics

In models based on the normal distribution, the mean µ and
variance σ2 are mathematically independent. The variance σ2

can, theoretically, take on any value relative to µ.

However, with binomial or Poisson distributions, means and
variances are not independent. The binomial random variable
X , the number of successes in N independent trials, has mean
µ = Np, and variance σ2 = Np(1− p) = (1− p)µ. The binomial
sample proportion, p̂ = X /N , has mean p and variance
p(1− p)/N .

The Poisson distribution has a variance equal to its mean, µ.
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Distributional Characteristics

Consequently, if we observe a set of observations xi that truly
are realizations of a Poisson random variable X , these
observations should show a sample variance that is reasonably
close to their sample mean.

In a similar vein, if we observe a set of sample proportions p̂i ,
each based on Ni independent observations, and our model is
that they all represent samples in a situation where p remains
stable, then the variation of the p̂i should be consistent with the
formula p(1− p)/Ni .
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Observing Overdispersion
Overdispersed Proportions

There are numerous reasons why overdispersion can occur in
practice. Let’s consider sample proportions based on the
binomial.

Suppose we hypothesize that the support enjoyed by President
Obama is constant across 5 midwestern states. That is, the
proportion of people in the populations of those states who
would answer “Yes” to a particular question is constant.

We perform opinion polls by randomly sampling 200 people in
each of the 5 states.
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Observing Overdispersion
Overdispersed Proportions

We observe the following results: Wisconsin 0.285, Michigan
0.565, Illinois 0.280, Iowa 0.605, Minnesota .765. An unbiased
estimate of the average proportion in these states can be
obtained by simply averaging the 5 proportions, since each was
based on a sample of size N = 200.

Using R, we obtain:

> data ← c(0.285 ,0.565 ,0.280 ,0.605 ,.765)
> mean(data)

[1] 0.5
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Observing Overdispersion
Overdispersed Proportions

These proportions have a mean of 0.50. They also show
considerable variability.

Is the variability of these proportions consistent with our
binomial model, which states that they are all representative of
a constant proportion p?

There are several ways we might approach this question, some
involving brute force statistical simulation, others involving the
use of statistical theory. Recall that sample proportions based
on N = 200 independent observations should show a variance of
p(1− p)/N . We can estimate this quantity in this case as

> 0.50*(1-0.50)/200

[1] 0.00125
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Observing Overdispersion
Overdispersed Proportions

On the other hand, these 5 sample proportions show a variance
of

> var(data)

[1] 0.045025

The variance ratio is

> variance.ratio = var(data) / (0.50*(1-0.50)/200)
> variance.ratio

[1] 36.02

The variance of the proportions is 36.02 times as large as it
should be. There are several statistical tests we could perform
to assess whether this variance ratio is statistically significant,
and they all reject the null hypothesis that the actual variance
ratio is 1.
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Observing Overdispersion
Overdispersed Proportions

As an example, we could look at the residuals of the 5 sample
proportions from their fitted value of .50. The residuals are:

> res iduals ← data - mean(data)
> res iduals

[1] -0.215 0.065 -0.220 0.105 0.265

Each residual can be converted to a standardized residual
z -score by dividing by its estimated standard deviation.

> standardized.residuals ← res iduals / sqrt (0.50*(1-0.50)/200)

We can then generate a χ2 statistic by taking the sum of
squared residuals. The statistic has the value

> chi.square ← sum(standardized.residuals ^2)

> chi.square

[1] 144.08
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Observing Overdispersion
Overdispersed Proportions

We have to subtract one degree of freedom because we
estimated p from the mean of the proportions. Our χ2 statistic
can be compared to the χ2 distribution with 4 degrees of
freedom. The 2-sided p − value is

> 2*(1 -pchisq(chi.square ,4))

[1] 0
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Observing Overdispersion
Overdispersed Proportions

Our sample proportions show overdispersion. Why?

The simplest explanation in this case is that they are not
samples from a population with a constant proportion p. That
is, there is heterogeneity of support for Obama across these 5
states.

Can you think of another reason why a set of proportions might
show overdispersion? (C.P.)

How about underdispersion? (C.P.)
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Overdispersed Counts

Since counts are free to vary over the integers, they obviously
can show a variance that is either substantially greater or less
than their mean, and thereby show overdispersion or
underdispersion relative to what is specified by the Poisson
model.

As an example, suppose we examine the impact of the median
income (in thousands) of families in a neighborhood on the
number of burglaries per month. Load the burglary.txt data file,
then plot burglaries as a function of median.income. These
data represent burglary counts for 500 metropolitan and
suburban neighborhoods.

> plot (median.income ,burglaries)
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Assessing Overdispersion

Let’s examine some data for evidence of overdispersion. First,
we’ll grab scores corresponding to a median.income between 59
and 61.

> test.data ← burglaries[median.income > 59 & median.income < 61]

> var(test.data)

[1] 22.53846

> mean(test.data)

[1] 7.333333

> var(test.data) / mean(test.data)

[1] 3.073427

The variance for these data is more than 3 times as large as the
mean.
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Assessing Overdispersion

Let’s try another region of the plot.

> test.data ← burglaries[median.income > 39 & median.income < 41]

> var(test.data)

[1] 97.14286

> mean(test.data)

[1] 21.85714

> var(test.data) / mean(test.data)

[1] 4.444444
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Assessing Overdispersion

The data show clear evidence of overdispersion. Let’s fit a
standard Poisson model to the data.

> standard.fit ← glm(burglaries ˜ median.income , family = "poisson")

> summary(standard.fit)

Call:
glm(formula = burglaries ~ median.income, family = "poisson")

Deviance Residuals:
Min 1Q Median 3Q Max

-6.6106 -1.2794 -0.2884 0.9102 7.7649

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.612422 0.055996 100.23 <2e-16 ***
median.income -0.061316 0.001091 -56.19 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4721.4 on 499 degrees of freedom
Residual deviance: 1452.6 on 498 degrees of freedom
AIC: 3196.4

Number of Fisher Scoring iterations: 5
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Fitting the Overdispersed Poisson Model

> plot (median.income ,burglaries)
> curve(exp( coef (standard.fit )[1] + coef (standard.fit )[2]*x),add=TRUE , col ="blue")
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The expected mean line,
plotted with the coefficients from the model, looks like a nice fit
to the data. However, the variance is several times the mean in
this model, and since the standard errors are based on the
assumption that the variance is equal to the mean, this creates
a problem. The actual variance is several times what it should
be, and so the standard errors printed by the program are
underestimates.
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Fitting the Overdispersed Poisson Model

It is not spelled out very clearly in Gelman & Hill , but there
are two fairly standard ways of handling this in R. One way
assumes simply that the conditional distribution is like the
Poisson, but with the variance a constant multiple of the mean
rather than being equal to the mean. This approach is used in
glm by selecting family="quasipoisson". Notice how the
dispersion parameter is estimated, and the estimated standard
errors from the Poisson fit are divided by the square root of this
parameter to obtain the revised standard errors shown below.

> overdispersed.fit ← glm(burglaries ˜ median.income , family="quasipoisson")

> summary(overdispersed.fit)

Call:
glm(formula = burglaries ~ median.income, family = "quasipoisson")

Deviance Residuals:
Min 1Q Median 3Q Max

-6.6106 -1.2794 -0.2884 0.9102 7.7649

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.612422 0.096108 58.40 <2e-16 ***
median.income -0.061316 0.001873 -32.74 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 2.945783)

Null deviance: 4721.4 on 499 degrees of freedom
Residual deviance: 1452.6 on 498 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5
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Fitting the Overdispersed Poisson Model

Another more sophisticated approach uses quasi-likelihood
estimation to fit the negative binomial model, which assumes
that the log means predicted from median.income are
perturbed by random variation (having a gamma distribution).
This random variation means that individual observations, for a
given value of the predictors, can have different means, centered
around x ′β. This leaves the conditional mean line the same,
but inflates the variance relative to that predicted by the
Poisson. The variance inflation is not constant, however. In the
negative binomial, there is an overdispersion parameter θ, but
the variance and mean are related as follows:

σ2 = µ(1 + µ/θ) (1)
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Fitting the Overdispersed Poisson Model

We can fit the negative binomial model, using the MASS library
function glm.nb. (Make sure the MASS library is loaded.)

> negative.binomial.fit ← glm.nb(burglaries ˜ median.income)

> summary(negative.binomial.fit)

Call:
glm.nb(formula = burglaries ~ median.income, init.theta = 4.95678961145058,

link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.8813 -0.8490 -0.1922 0.6297 2.9637

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.57414 0.12042 46.29 <2e-16 ***
median.income -0.06060 0.00207 -29.27 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(4.9568) family taken to be 1)

Null deviance: 1606.97 on 499 degrees of freedom
Residual deviance: 545.33 on 498 degrees of freedom
AIC: 2730.7

Number of Fisher Scoring iterations: 1

Theta: 4.957
Std. Err.: 0.550

2 x log-likelihood: -2724.713
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Fitting the Overdispersed Poisson Model

In this case, the data were artificial. I created them according
to the negative binomial model µ = −.06x + 5.5, with
overdispersion parameter θ = 5.

As you can see, in this case glm.nb estimates were very close to
the true values, and the χ2 fit statistic of 545.33 fails to reach
significance at the .05 level, meaning that the hypothesis of
perfect fit cannot be rejected.

On the other hand, the quasipoisson family model fit, which
assumes that the variance is a constant multiple of the mean,
could not fit these data nearly as well. The deviance statistic of
1452.6 is much higher.
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Fitting the Overdispersed Poisson Model

Consider an instructive case, when median.income is 30. In this
case, the mean and variance are actually

> m ← exp(-.06 * 30 + 5.5)
> v ← m * (1+m/5)
> m

[1] 40.44730

> v

[1] 367.6442

The quasipoisson fit estimates them as

> m ← exp( coef (overdispersed.fit )[1] + coef (overdispersed.fit )[2] * 30)
> v ← m * 2.945783

> m

(Intercept)
43.50732

> v

(Intercept)
128.1631
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